Simplifying square roots
To simplify roots you can use Product Property of Square Roots:
$$√{a×b}=√a×√b$$
At first, find the perfect square inside the square root:
$$√24;→;24=2×2×3×2=4×6$$
$$√24=√{4×6}=√4×√6=2×√6$$
This can be written as $2√6$.
You can also use these formulae:
$$a^2=a×a$$
$$a^1=a$$
$$a^0=1$$
$$a^{−1}=1/a$$
$$a^{−n}=1/{a^n}$$
$$a^m×a^n=a^m a^n=a^{(m+n)}$$
$${a^m}/{a^n}=a^{m−n}$$
$$(a^m)^n=a^{(m×n)}$$
$$a^{1/n}=√^{n}a$$
$$√^n{a}√^n{b} = √^n{ab}$$
$$√{ab} = √a×√b$$
$$√{a/b}=√a/√b$$
$$(a/b)^2=a^2/b^2$$